Autonomous Learning of a Robust Background Model for Change Detection
نویسندگان
چکیده
We propose a framework for observing static scenes that can be used to detect unknown objects (i.e., left luggage or lost cargo) as well as objects that were removed or changed (i.e., theft or vandalism). The core of the method is a robust background model based on on-line AdaBoost which is able to adapt to a large variety of appearance changes (e.g., blinking lights, illumination changes). However, a natural scene contains foreground objects (e.g., persons, cars). Thus, a detector for these foreground objects is automatically trained and a tracker is initialized for two purposes: (1) to prevent that a foreground object is included into the background model and (2) to analyze the scene. For efficiency reasons it is important that all components of the framework are using the same efficient data structure. We demonstrate and evaluate the developed method on the PETS 2006 sequences as well as on own sequences of surveillance cameras.
منابع مشابه
Intelligent Auto pilot Design for a Nonlinear Model of an Autonomous Helicopter by Adaptive Emotional Approach
There is a growing interest in the modeling and control of model helicopters using nonlinear dynamic models and nonlinear control. Application of a new intelligent control approach called Brain Emotional Learning Based Intelligent Controller (BELBIC) to design autopilot for an autonomous helicopter is addressed in this paper. This controller is applied to a nonlinear model of a helicopter. This...
متن کاملA robust wavelet based profile monitoring and change point detection using S-estimator and clustering
Some quality characteristics are well defined when treated as response variables and are related to some independent variables. This relationship is called a profile. Parametric models, such as linear models, may be used to model profiles. However, in practical applications due to the complexity of many processes it is not usually possible to model a process using parametric models.In these cas...
متن کاملRobust stabilization of a class of three-dimensional uncertain fractional-order non-autonomous systems
This paper concerns the problem of robust stabilization of uncertain fractional-order non-autonomous systems. In this regard, a single input active control approach is proposed for control and stabilization of three-dimensional uncertain fractional-order systems. The robust controller is designed on the basis of fractional Lyapunov stability theory. Furthermore, the effects of model uncertai...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملIdentification and Robust Fault Detection of Industrial Gas Turbine Prototype Using LLNF Model
In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the a...
متن کاملRobust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006